1Baird-Parker Agar (BPA)his is a selective medium for the isolation of Staphylococcus species. It has lithium chloride and glycine to inhibit the growth of Gram-negative bacteria and most Gram-positive bacteria except Staphylococcus. Egg yolk emulsion is added to detect lecithinase production and tellurite reduction. S. aureus colonies on BPA are black due to reduction of tellurite, and they exhibit a clear zone due to lecithinase activity on egg yolk.
2BACTECThis is not a traditional medium but a system for detecting the growth of M. tuberculosis by monitoring the release of C14O2 from C14 palmitic acid, which the bacteria metabolize. An increase in radioactive counts in the BACTEC instrument indicates the growth of bacteria.
3Proskauer and Beck’s MediumA liquid medium. The growth of M. tuberculosis causes turbidity.
4Middlebrook 7H9 BrothThis is a liquid medium that contains glycerol and Tween 80, which prevent clumping of mycobacteria. The growth of M. tuberculosis results in turbidity.
5Dubos’ MediumA liquid medium that contains a mixture of salts, fatty acids, and polysorbate. When M. tuberculosis grows in this medium, it causes the medium to become turbid.
6Tarshis MediumA blood-based medium that can promote the growth of M. tuberculosis. The colonies appear similar to those on the LJ Medium.
7Lowenstein-Jensen (LJ) MediumAn egg-based medium that uses malachite green to suppress the growth of other bacteria and glycerol to stimulate the growth of Mycobacterium tuberculosis. The colonies of M. tuberculosis on LJ are non-pigmented, dry, rough, raised, irregular with a wrinkled surface, initially creamy-white, turning yellowish or buff-colored on further incubation.
8Lysine Iron Agar (LIA)Used to determine the ability of an organism to decarboxylate or deaminate lysine and to form hydrogen sulfide. E. coli is typically lysine decarboxylase positive and H2S negative, so you would see a reaction of red/purple slant and purple/red butt with no black precipitate.
9Tryptic Soy Agar (TSA)A general purpose medium. E. coli colonies are medium to large, with a shiny moist appearance.
10m-ENDO AgarE. coli colonies appear as green with a metallic sheen, indicating lactose fermentation.
11MacConkey AgarTraditionally used to isolate and differentiate Gram-negative bacilli, E. faecalis can grow on this medium, producing small, round, magenta pink colonies due to lactose fermentation, indicating a positive result.
12Azide Dextrose BrothA selective medium inhibiting Gram-negative bacteria, used for the isolation of streptococci and staphylococci from mixed samples. E. faecalis will show a positive growth resulting in a turbid appearance of the broth.
1Proskauer and Beck’s MediumA liquid medium. The growth of M. tuberculosis causes turbidity.
2Tarshis MediumA blood-based medium that can promote the growth of M. tuberculosis. The colonies appear similar to those on the LJ Medium.
3Sorbitol-MacConkey agarA variant of MacConkey agar, used in detecting E. coli O157:H7, which does not ferment sorbitol, unlike most strains of E. coli.
4m-ENDO AgarE. coli colonies appear as green with a metallic sheen, indicating lactose fermentation.
5Potato Dextrose Agar (PDA)Potato Dextrose Agar (PDA) consists of a nutrient-rich substrate, made from dehydrated Potato Infusion and Dextrose, ideal for robust mycological propagation. Agar provides the solidifying medium. Acidification, typically using sterile tartaric acid, adjusts the pH to 3.5 +/- 0.1 to create a more selective environment by inhibiting bacterial proliferation. Additionally, Chloramphenicol is incorporated as an antimicrobial agent to further suppress bacterial contamination, thereby facilitating the selective isolation of fungi.
6Sabouraud Dextrose Agar (SDA)It is composed of peptone, dextrose (glucose), and agar. The high dextrose concentration promotes fungal growth, while the acidic pH inhibits bacterial growth.
7Nutrient AgarIt is a general-purpose medium. However, E. faecalis grows poorly on nutrient agar, which means it does not proliferate as well on this medium compared to the others listed, indicating a negative or poor growth.
1Phenol Red Mannitol BrothThis is a differential medium, used to determine an organism's ability to ferment mannitol. S. aureus, which can ferment mannitol, will change the medium from red to yellow due to acid production.
2m-ENDO AgarE. coli colonies appear as green with a metallic sheen, indicating lactose fermentation.
1Middlebrook 7H9 BrothThis is a liquid medium that contains glycerol and Tween 80, which prevent clumping of mycobacteria. The growth of M. tuberculosis results in turbidity.
2Tarshis MediumA blood-based medium that can promote the growth of M. tuberculosis. The colonies appear similar to those on the LJ Medium.
3Sabouraud Dextrose Agar (SDA)It is composed of peptone, dextrose (glucose), and agar. The high dextrose concentration promotes fungal growth, while the acidic pH inhibits bacterial growth.
1Phenol Red Mannitol BrothThis is a differential medium, used to determine an organism's ability to ferment mannitol. S. aureus, which can ferment mannitol, will change the medium from red to yellow due to acid production.
2Tarshis MediumA blood-based medium that can promote the growth of M. tuberculosis. The colonies appear similar to those on the LJ Medium.
3Middlebrook 7H11 AgarThis is a nutrient-rich medium similar to 7H10 but includes additional pyruvate for energy source, promoting more luxurious growth. The colonies of M. tuberculosis appear small, slightly domed, and rough with a butyrous consistency.
4Petragnini MediumAn egg-based medium enriched with additional nutrients to promote the growth of Mycobacterium tuberculosis. Colonies of M. tuberculosis are small, round, buff-colored, and typically take 3-4 weeks to appear.
5Liquid Media (such as Nutrient Broth)E. coli exhibits homogenous turbid growth within 12-18 hours. After prolonged incubation, pellicles may form on the surface of the media.
6Brilliant Green Agar (BGA)A selective medium that is used to isolate Salmonella species, but E. coli can grow on it, albeit not as well.
7Cystine Lactose Electrolyte-Deficient (CLED) AgarE. coli will give lactose-positive yellow colonies.
8MacConkey Agar (MAC)This selective and differential medium distinguishes lactose fermenters from non-fermenters. E. coli colonies are circular, moist, smooth, and pink.
1Blood Agar (BA)This is a nutrient-rich, differential medium that supports the growth of many organisms. S. aureus forms colonies that are round, smooth, and golden-yellow. This bacterium typically demonstrates β-hemolysis, which is complete lysis of red blood cells, resulting in a clear zone around the colonies. This hemolysis is due to the production of hemolysins by S. aureus.
2Tarshis MediumA blood-based medium that can promote the growth of M. tuberculosis. The colonies appear similar to those on the LJ Medium.
3Middlebrook 7H10 AgarA selective medium that contains oleic acid, albumin, dextrose, and catalase. The colonies of M. tuberculosis appear small, rough, and buff to white-colored, taking less time to appear compared to egg-based media.
4Triple Sugar Iron (TSI) AgarE. coli typically produces an acid butt, acid slant, and gas, with no H2S production, indicating it ferments lactose, sucrose, and glucose.
5m-ENDO AgarE. coli colonies appear as green with a metallic sheen, indicating lactose fermentation.
6Blood AgarA differential medium used to identify bacteria based on their hemolytic properties. E. faecalis typically shows gamma-hemolysis on this medium, i.e., no hemolysis or change in the color of the medium.
1Sf1Ep mediumCulturing Treponema pallidum, the bacteria that causes syphilis, in vitro is a challenge. T. pallidum is not routinely cultured in the laboratory for diagnostic purposes, in part because it cannot be grown on artificial media. However, a breakthrough in culturing T. pallidum was reported in 2018 when researchers managed to grow the bacterium in a rabbit epithelial cell line (Sf1Ep) using a medium called 'Sf1Ep medium'. It's not used for routine diagnostic purposes, but for research only. The diagnosis involves direct microscopic examination, serologic tests, molecular tests and histopathology.
2Sauton’s MediumA liquid medium that lacks detergents, which helps in the formation of corded colonies. When M. tuberculosis grows in this medium, it results in turbidity.
3Nickerson’s Medium or Bismuth Sulfite Glucose Glycine Yeast (BSGG)This medium is used to stimulate the production of germ tubes, a characteristic of Candida albicans.