Culture Media by Morphological Classification

Morphological Class

Protozoa


Culture Media

1 Mannitol Salt Agar (MSA), or Chapman Agar This is a selective and differential medium. The high concentration of NaCl (~7.5%) selects for halophiles, organisms that can tolerate high salt concentrations, thereby favouring the growth of Staphylococcus species. Mannitol is the differential component: S. aureus ferments mannitol, lowering the pH of the medium, which results in a color change of the pH indicator from red to yellow. Thus, growth of S. aureus is indicated by yellow colonies.

Mycobacteria


Culture Media

1 Tryptic Soy Agar (TSA) A general purpose medium. E. coli colonies are medium to large, with a shiny moist appearance.
2 Potato Dextrose Agar (PDA) Potato Dextrose Agar (PDA) consists of a nutrient-rich substrate, made from dehydrated Potato Infusion and Dextrose, ideal for robust mycological propagation. Agar provides the solidifying medium. Acidification, typically using sterile tartaric acid, adjusts the pH to 3.5 +/- 0.1 to create a more selective environment by inhibiting bacterial proliferation. Additionally, Chloramphenicol is incorporated as an antimicrobial agent to further suppress bacterial contamination, thereby facilitating the selective isolation of fungi.

Fungi


Culture Media

1 Dubos’ Medium A liquid medium that contains a mixture of salts, fatty acids, and polysorbate. When M. tuberculosis grows in this medium, it causes the medium to become turbid.
2 Tarshis Medium A blood-based medium that can promote the growth of M. tuberculosis. The colonies appear similar to those on the LJ Medium.
3 Middlebrook 7H10 Agar A selective medium that contains oleic acid, albumin, dextrose, and catalase. The colonies of M. tuberculosis appear small, rough, and buff to white-colored, taking less time to appear compared to egg-based media.
4 m-ENDO Agar E. coli colonies appear as green with a metallic sheen, indicating lactose fermentation.
5 RPMI 1640 Medium It is a rich medium that contains inorganic salts, glucose, amino acids, vitamins, and other nutrients that promote the growth of yeast cells.

Bacilli


Culture Media

1 Baird-Parker Agar (BPA) his is a selective medium for the isolation of Staphylococcus species. It has lithium chloride and glycine to inhibit the growth of Gram-negative bacteria and most Gram-positive bacteria except Staphylococcus. Egg yolk emulsion is added to detect lecithinase production and tellurite reduction. S. aureus colonies on BPA are black due to reduction of tellurite, and they exhibit a clear zone due to lecithinase activity on egg yolk.
2 Tarshis Medium A blood-based medium that can promote the growth of M. tuberculosis. The colonies appear similar to those on the LJ Medium.
3 Middlebrook 7H11 Agar This is a nutrient-rich medium similar to 7H10 but includes additional pyruvate for energy source, promoting more luxurious growth. The colonies of M. tuberculosis appear small, slightly domed, and rough with a butyrous consistency.
4 Liquid Media (such as Nutrient Broth) E. coli exhibits homogenous turbid growth within 12-18 hours. After prolonged incubation, pellicles may form on the surface of the media.

Spirillum


Culture Media

1 Dubos’ Medium A liquid medium that contains a mixture of salts, fatty acids, and polysorbate. When M. tuberculosis grows in this medium, it causes the medium to become turbid.
2 Blood Agar A differential medium used to identify bacteria based on their hemolytic properties. E. faecalis typically shows gamma-hemolysis on this medium, i.e., no hemolysis or change in the color of the medium.

Spirochetes


Culture Media

1 Mannitol Salt Agar (MSA), or Chapman Agar This is a selective and differential medium. The high concentration of NaCl (~7.5%) selects for halophiles, organisms that can tolerate high salt concentrations, thereby favouring the growth of Staphylococcus species. Mannitol is the differential component: S. aureus ferments mannitol, lowering the pH of the medium, which results in a color change of the pH indicator from red to yellow. Thus, growth of S. aureus is indicated by yellow colonies.
2 Petragnini Medium An egg-based medium enriched with additional nutrients to promote the growth of Mycobacterium tuberculosis. Colonies of M. tuberculosis are small, round, buff-colored, and typically take 3-4 weeks to appear.
3 Mueller Hinton Agar (MHA) Typically used for antibiotic susceptibility testing. E. coli colonies appear pale straw colored.
4 Nickerson’s Medium or Bismuth Sulfite Glucose Glycine Yeast (BSGG) This medium is used to stimulate the production of germ tubes, a characteristic of Candida albicans.
5 Brain-Heart Infusion (BHI) Broth or Agar This is a nutrient-rich medium that supports the growth of a variety of fastidious organisms, including E. faecalis. The typical phenotype of E. faecalis on BHI is small, round, and white colonies.