1Lowenstein-Jensen (LJ) MediumAn egg-based medium that uses malachite green to suppress the growth of other bacteria and glycerol to stimulate the growth of Mycobacterium tuberculosis. The colonies of M. tuberculosis on LJ are non-pigmented, dry, rough, raised, irregular with a wrinkled surface, initially creamy-white, turning yellowish or buff-colored on further incubation.
2Tryptic Soy Agar (TSA)A general purpose medium. E. coli colonies are medium to large, with a shiny moist appearance.
3Azide Dextrose BrothA selective medium inhibiting Gram-negative bacteria, used for the isolation of streptococci and staphylococci from mixed samples. E. faecalis will show a positive growth resulting in a turbid appearance of the broth.
1Potato Dextrose Agar (PDA)Potato Dextrose Agar (PDA) consists of a nutrient-rich substrate, made from dehydrated Potato Infusion and Dextrose, ideal for robust mycological propagation. Agar provides the solidifying medium. Acidification, typically using sterile tartaric acid, adjusts the pH to 3.5 +/- 0.1 to create a more selective environment by inhibiting bacterial proliferation. Additionally, Chloramphenicol is incorporated as an antimicrobial agent to further suppress bacterial contamination, thereby facilitating the selective isolation of fungi.
2Sabouraud Dextrose Agar (SDA)It is composed of peptone, dextrose (glucose), and agar. The high dextrose concentration promotes fungal growth, while the acidic pH inhibits bacterial growth.
1Phenol Red Mannitol BrothThis is a differential medium, used to determine an organism's ability to ferment mannitol. S. aureus, which can ferment mannitol, will change the medium from red to yellow due to acid production.
2Brilliant Green Agar (BGA)A selective medium that is used to isolate Salmonella species, but E. coli can grow on it, albeit not as well.
3Triple Sugar Iron (TSI) AgarE. coli typically produces an acid butt, acid slant, and gas, with no H2S production, indicating it ferments lactose, sucrose, and glucose.
4Cystine Lactose Electrolyte-Deficient (CLED) AgarE. coli will give lactose-positive yellow colonies.
5Blood AgarA differential medium used to identify bacteria based on their hemolytic properties. E. faecalis typically shows gamma-hemolysis on this medium, i.e., no hemolysis or change in the color of the medium.
6Todd-Hewitt BrothA liquid enrichment medium used for the cultivation of fastidious organisms such as streptococci and enterococci. E. faecalis will lead to a turbid broth due to microbial growth.
1Blood Agar (BA)This is a nutrient-rich, differential medium that supports the growth of many organisms. S. aureus forms colonies that are round, smooth, and golden-yellow. This bacterium typically demonstrates β-hemolysis, which is complete lysis of red blood cells, resulting in a clear zone around the colonies. This hemolysis is due to the production of hemolysins by S. aureus.
2Sula’s MediumA liquid medium containing glycerol, asparagine, and a variety of salts. The growth of M. tuberculosis results in turbidity.
3Middlebrook 7H9 BrothThis is a liquid medium that contains glycerol and Tween 80, which prevent clumping of mycobacteria. The growth of M. tuberculosis results in turbidity.
4Tarshis MediumA blood-based medium that can promote the growth of M. tuberculosis. The colonies appear similar to those on the LJ Medium.
5Triple Sugar Iron (TSI) AgarE. coli typically produces an acid butt, acid slant, and gas, with no H2S production, indicating it ferments lactose, sucrose, and glucose.
6Simmons Citrate AgarUsed for citrate utilization testing. E. coli usually can't utilize citrate as a sole carbon source, so no growth or color change would be expected.
7Nickerson’s Medium or Bismuth Sulfite Glucose Glycine Yeast (BSGG)This medium is used to stimulate the production of germ tubes, a characteristic of Candida albicans.
8Cornmeal Agar with Tween 80It is used for the identification of Candida species by promoting the formation of chlamydospores, which is a characteristic of Candida albicans.
9CHROMagar CandidaThis differential medium allows for the isolation and identification of Candida species based on colony color. Candida albicans usually forms green colonies on this medium.
10Sabouraud Dextrose Agar (SDA)It is composed of peptone, dextrose (glucose), and agar. The high dextrose concentration promotes fungal growth, while the acidic pH inhibits bacterial growth.
11Blood AgarA differential medium used to identify bacteria based on their hemolytic properties. E. faecalis typically shows gamma-hemolysis on this medium, i.e., no hemolysis or change in the color of the medium.
12Todd-Hewitt BrothA liquid enrichment medium used for the cultivation of fastidious organisms such as streptococci and enterococci. E. faecalis will lead to a turbid broth due to microbial growth.
13Bile Esculin Agar (BEA)A selective and differential medium that differentiates group D Streptococci and Enterococci based on the ability to hydrolyze esculin in the presence of bile. E. faecalis hydrolyzes esculin, leading to the formation of a dark brown or black precipita
1Phenol Red Mannitol BrothThis is a differential medium, used to determine an organism's ability to ferment mannitol. S. aureus, which can ferment mannitol, will change the medium from red to yellow due to acid production.
2Blood Agar (BA)This is a nutrient-rich, differential medium that supports the growth of many organisms. S. aureus forms colonies that are round, smooth, and golden-yellow. This bacterium typically demonstrates β-hemolysis, which is complete lysis of red blood cells, resulting in a clear zone around the colonies. This hemolysis is due to the production of hemolysins by S. aureus.
3Sula’s MediumA liquid medium containing glycerol, asparagine, and a variety of salts. The growth of M. tuberculosis results in turbidity.
4Tarshis MediumA blood-based medium that can promote the growth of M. tuberculosis. The colonies appear similar to those on the LJ Medium.
5Middlebrook 7H11 AgarThis is a nutrient-rich medium similar to 7H10 but includes additional pyruvate for energy source, promoting more luxurious growth. The colonies of M. tuberculosis appear small, slightly domed, and rough with a butyrous consistency.
6Petragnini MediumAn egg-based medium enriched with additional nutrients to promote the growth of Mycobacterium tuberculosis. Colonies of M. tuberculosis are small, round, buff-colored, and typically take 3-4 weeks to appear.
7Liquid Media (such as Nutrient Broth)E. coli exhibits homogenous turbid growth within 12-18 hours. After prolonged incubation, pellicles may form on the surface of the media.
8Brilliant Green Agar (BGA)A selective medium that is used to isolate Salmonella species, but E. coli can grow on it, albeit not as well.
9Urea Agar/BrothE. coli is typically urease negative, so no color change would be expected in this medium.
10Triple Sugar Iron (TSI) AgarE. coli typically produces an acid butt, acid slant, and gas, with no H2S production, indicating it ferments lactose, sucrose, and glucose.
11Cystine Lactose Electrolyte-Deficient (CLED) AgarE. coli will give lactose-positive yellow colonies.
12MacConkey Agar (MAC)This selective and differential medium distinguishes lactose fermenters from non-fermenters. E. coli colonies are circular, moist, smooth, and pink.
13Nickerson’s Medium or Bismuth Sulfite Glucose Glycine Yeast (BSGG)This medium is used to stimulate the production of germ tubes, a characteristic of Candida albicans.
14Blood AgarA differential medium used to identify bacteria based on their hemolytic properties. E. faecalis typically shows gamma-hemolysis on this medium, i.e., no hemolysis or change in the color of the medium.
15Todd-Hewitt BrothA liquid enrichment medium used for the cultivation of fastidious organisms such as streptococci and enterococci. E. faecalis will lead to a turbid broth due to microbial growth.
1Blood Agar (BA)This is a nutrient-rich, differential medium that supports the growth of many organisms. S. aureus forms colonies that are round, smooth, and golden-yellow. This bacterium typically demonstrates β-hemolysis, which is complete lysis of red blood cells, resulting in a clear zone around the colonies. This hemolysis is due to the production of hemolysins by S. aureus.
2Sula’s MediumA liquid medium containing glycerol, asparagine, and a variety of salts. The growth of M. tuberculosis results in turbidity.
3Tarshis MediumA blood-based medium that can promote the growth of M. tuberculosis. The colonies appear similar to those on the LJ Medium.
4Middlebrook 7H10 AgarA selective medium that contains oleic acid, albumin, dextrose, and catalase. The colonies of M. tuberculosis appear small, rough, and buff to white-colored, taking less time to appear compared to egg-based media.
5Brilliant Green Agar (BGA)A selective medium that is used to isolate Salmonella species, but E. coli can grow on it, albeit not as well.
6Triple Sugar Iron (TSI) AgarE. coli typically produces an acid butt, acid slant, and gas, with no H2S production, indicating it ferments lactose, sucrose, and glucose.
7Cystine Lactose Electrolyte-Deficient (CLED) AgarE. coli will give lactose-positive yellow colonies.
8Nickerson’s Medium or Bismuth Sulfite Glucose Glycine Yeast (BSGG)This medium is used to stimulate the production of germ tubes, a characteristic of Candida albicans.
9CHROMagar CandidaThis differential medium allows for the isolation and identification of Candida species based on colony color. Candida albicans usually forms green colonies on this medium.
10Blood AgarA differential medium used to identify bacteria based on their hemolytic properties. E. faecalis typically shows gamma-hemolysis on this medium, i.e., no hemolysis or change in the color of the medium.
11Todd-Hewitt BrothA liquid enrichment medium used for the cultivation of fastidious organisms such as streptococci and enterococci. E. faecalis will lead to a turbid broth due to microbial growth.
12Bile Esculin Agar (BEA)A selective and differential medium that differentiates group D Streptococci and Enterococci based on the ability to hydrolyze esculin in the presence of bile. E. faecalis hydrolyzes esculin, leading to the formation of a dark brown or black precipita
1Sf1Ep mediumCulturing Treponema pallidum, the bacteria that causes syphilis, in vitro is a challenge. T. pallidum is not routinely cultured in the laboratory for diagnostic purposes, in part because it cannot be grown on artificial media. However, a breakthrough in culturing T. pallidum was reported in 2018 when researchers managed to grow the bacterium in a rabbit epithelial cell line (Sf1Ep) using a medium called 'Sf1Ep medium'. It's not used for routine diagnostic purposes, but for research only. The diagnosis involves direct microscopic examination, serologic tests, molecular tests and histopathology.
2Phenol Red Mannitol BrothThis is a differential medium, used to determine an organism's ability to ferment mannitol. S. aureus, which can ferment mannitol, will change the medium from red to yellow due to acid production.
3Blood Agar (BA)This is a nutrient-rich, differential medium that supports the growth of many organisms. S. aureus forms colonies that are round, smooth, and golden-yellow. This bacterium typically demonstrates β-hemolysis, which is complete lysis of red blood cells, resulting in a clear zone around the colonies. This hemolysis is due to the production of hemolysins by S. aureus.
4Sauton’s MediumA liquid medium that lacks detergents, which helps in the formation of corded colonies. When M. tuberculosis grows in this medium, it results in turbidity.
5Sula’s MediumA liquid medium containing glycerol, asparagine, and a variety of salts. The growth of M. tuberculosis results in turbidity.
6Loeffler MediumA serum-based medium. M. tuberculosis colonies on Loeffler medium are small, dry, wrinkled, and off-white to yellow.
7Middlebrook 7H11 AgarThis is a nutrient-rich medium similar to 7H10 but includes additional pyruvate for energy source, promoting more luxurious growth. The colonies of M. tuberculosis appear small, slightly domed, and rough with a butyrous consistency.
8Middlebrook 7H10 AgarA selective medium that contains oleic acid, albumin, dextrose, and catalase. The colonies of M. tuberculosis appear small, rough, and buff to white-colored, taking less time to appear compared to egg-based media.
9Brilliant Green Agar (BGA)A selective medium that is used to isolate Salmonella species, but E. coli can grow on it, albeit not as well.
10Urea Agar/BrothE. coli is typically urease negative, so no color change would be expected in this medium.
11Triple Sugar Iron (TSI) AgarE. coli typically produces an acid butt, acid slant, and gas, with no H2S production, indicating it ferments lactose, sucrose, and glucose.
12Simmons Citrate AgarUsed for citrate utilization testing. E. coli usually can't utilize citrate as a sole carbon source, so no growth or color change would be expected.
13Cystine Lactose Electrolyte-Deficient (CLED) AgarE. coli will give lactose-positive yellow colonies.
14Eosin Methylene Blue (EMB) AgarA selective and differential medium where E. coli forms distinctive metallic green sheen colonies due to vigorous lactose fermentation.
15MacConkey Agar (MAC)This selective and differential medium distinguishes lactose fermenters from non-fermenters. E. coli colonies are circular, moist, smooth, and pink.
16Blood Agar (BA)E. coli colonies on this differential medium are large, circular, gray, moist, and can show β-hemolysis.
17Nutrient Agar (NA)A non-selective medium. E. coli colonies are usually large, circular, grayish-white, moist, and smooth.
18Nickerson’s Medium or Bismuth Sulfite Glucose Glycine Yeast (BSGG)This medium is used to stimulate the production of germ tubes, a characteristic of Candida albicans.
19CHROMagar CandidaThis differential medium allows for the isolation and identification of Candida species based on colony color. Candida albicans usually forms green colonies on this medium.
20RPMI 1640 MediumIt is a rich medium that contains inorganic salts, glucose, amino acids, vitamins, and other nutrients that promote the growth of yeast cells.
21Blood AgarA differential medium used to identify bacteria based on their hemolytic properties. E. faecalis typically shows gamma-hemolysis on this medium, i.e., no hemolysis or change in the color of the medium.
22Azide Dextrose BrothA selective medium inhibiting Gram-negative bacteria, used for the isolation of streptococci and staphylococci from mixed samples. E. faecalis will show a positive growth resulting in a turbid appearance of the broth.
23Todd-Hewitt BrothA liquid enrichment medium used for the cultivation of fastidious organisms such as streptococci and enterococci. E. faecalis will lead to a turbid broth due to microbial growth.
24Bile Esculin Agar (BEA)A selective and differential medium that differentiates group D Streptococci and Enterococci based on the ability to hydrolyze esculin in the presence of bile. E. faecalis hydrolyzes esculin, leading to the formation of a dark brown or black precipita