1Lowenstein-Jensen (LJ) MediumAn egg-based medium that uses malachite green to suppress the growth of other bacteria and glycerol to stimulate the growth of Mycobacterium tuberculosis. The colonies of M. tuberculosis on LJ are non-pigmented, dry, rough, raised, irregular with a wrinkled surface, initially creamy-white, turning yellowish or buff-colored on further incubation.
2Tryptic Soy Agar (TSA)A general purpose medium. E. coli colonies are medium to large, with a shiny moist appearance.
3Azide Dextrose BrothA selective medium inhibiting Gram-negative bacteria, used for the isolation of streptococci and staphylococci from mixed samples. E. faecalis will show a positive growth resulting in a turbid appearance of the broth.
1Potato Dextrose Agar (PDA)Potato Dextrose Agar (PDA) consists of a nutrient-rich substrate, made from dehydrated Potato Infusion and Dextrose, ideal for robust mycological propagation. Agar provides the solidifying medium. Acidification, typically using sterile tartaric acid, adjusts the pH to 3.5 +/- 0.1 to create a more selective environment by inhibiting bacterial proliferation. Additionally, Chloramphenicol is incorporated as an antimicrobial agent to further suppress bacterial contamination, thereby facilitating the selective isolation of fungi.
2Sabouraud Dextrose Agar (SDA)It is composed of peptone, dextrose (glucose), and agar. The high dextrose concentration promotes fungal growth, while the acidic pH inhibits bacterial growth.
1Phenol Red Mannitol BrothThis is a differential medium, used to determine an organism's ability to ferment mannitol. S. aureus, which can ferment mannitol, will change the medium from red to yellow due to acid production.
2Cystine Lactose Electrolyte-Deficient (CLED) AgarE. coli will give lactose-positive yellow colonies.
1Blood Agar (BA)This is a nutrient-rich, differential medium that supports the growth of many organisms. S. aureus forms colonies that are round, smooth, and golden-yellow. This bacterium typically demonstrates β-hemolysis, which is complete lysis of red blood cells, resulting in a clear zone around the colonies. This hemolysis is due to the production of hemolysins by S. aureus.
2Sula’s MediumA liquid medium containing glycerol, asparagine, and a variety of salts. The growth of M. tuberculosis results in turbidity.
3Middlebrook 7H9 BrothThis is a liquid medium that contains glycerol and Tween 80, which prevent clumping of mycobacteria. The growth of M. tuberculosis results in turbidity.
4Tarshis MediumA blood-based medium that can promote the growth of M. tuberculosis. The colonies appear similar to those on the LJ Medium.
5Triple Sugar Iron (TSI) AgarE. coli typically produces an acid butt, acid slant, and gas, with no H2S production, indicating it ferments lactose, sucrose, and glucose.
6Simmons Citrate AgarUsed for citrate utilization testing. E. coli usually can't utilize citrate as a sole carbon source, so no growth or color change would be expected.
7Nickerson’s Medium or Bismuth Sulfite Glucose Glycine Yeast (BSGG)This medium is used to stimulate the production of germ tubes, a characteristic of Candida albicans.
8CHROMagar CandidaThis differential medium allows for the isolation and identification of Candida species based on colony color. Candida albicans usually forms green colonies on this medium.
9Sabouraud Dextrose Agar (SDA)It is composed of peptone, dextrose (glucose), and agar. The high dextrose concentration promotes fungal growth, while the acidic pH inhibits bacterial growth.
10Blood AgarA differential medium used to identify bacteria based on their hemolytic properties. E. faecalis typically shows gamma-hemolysis on this medium, i.e., no hemolysis or change in the color of the medium.
11Todd-Hewitt BrothA liquid enrichment medium used for the cultivation of fastidious organisms such as streptococci and enterococci. E. faecalis will lead to a turbid broth due to microbial growth.
12Bile Esculin Agar (BEA)A selective and differential medium that differentiates group D Streptococci and Enterococci based on the ability to hydrolyze esculin in the presence of bile. E. faecalis hydrolyzes esculin, leading to the formation of a dark brown or black precipita
1Phenol Red Mannitol BrothThis is a differential medium, used to determine an organism's ability to ferment mannitol. S. aureus, which can ferment mannitol, will change the medium from red to yellow due to acid production.
2Blood Agar (BA)This is a nutrient-rich, differential medium that supports the growth of many organisms. S. aureus forms colonies that are round, smooth, and golden-yellow. This bacterium typically demonstrates β-hemolysis, which is complete lysis of red blood cells, resulting in a clear zone around the colonies. This hemolysis is due to the production of hemolysins by S. aureus.
3Tarshis MediumA blood-based medium that can promote the growth of M. tuberculosis. The colonies appear similar to those on the LJ Medium.
4Middlebrook 7H11 AgarThis is a nutrient-rich medium similar to 7H10 but includes additional pyruvate for energy source, promoting more luxurious growth. The colonies of M. tuberculosis appear small, slightly domed, and rough with a butyrous consistency.
5Petragnini MediumAn egg-based medium enriched with additional nutrients to promote the growth of Mycobacterium tuberculosis. Colonies of M. tuberculosis are small, round, buff-colored, and typically take 3-4 weeks to appear.
6Liquid Media (such as Nutrient Broth)E. coli exhibits homogenous turbid growth within 12-18 hours. After prolonged incubation, pellicles may form on the surface of the media.
7Brilliant Green Agar (BGA)A selective medium that is used to isolate Salmonella species, but E. coli can grow on it, albeit not as well.
8Urea Agar/BrothE. coli is typically urease negative, so no color change would be expected in this medium.
9Triple Sugar Iron (TSI) AgarE. coli typically produces an acid butt, acid slant, and gas, with no H2S production, indicating it ferments lactose, sucrose, and glucose.
10Cystine Lactose Electrolyte-Deficient (CLED) AgarE. coli will give lactose-positive yellow colonies.
11MacConkey Agar (MAC)This selective and differential medium distinguishes lactose fermenters from non-fermenters. E. coli colonies are circular, moist, smooth, and pink.
12Nickerson’s Medium or Bismuth Sulfite Glucose Glycine Yeast (BSGG)This medium is used to stimulate the production of germ tubes, a characteristic of Candida albicans.
1Blood Agar (BA)This is a nutrient-rich, differential medium that supports the growth of many organisms. S. aureus forms colonies that are round, smooth, and golden-yellow. This bacterium typically demonstrates β-hemolysis, which is complete lysis of red blood cells, resulting in a clear zone around the colonies. This hemolysis is due to the production of hemolysins by S. aureus.
2Tarshis MediumA blood-based medium that can promote the growth of M. tuberculosis. The colonies appear similar to those on the LJ Medium.
3Middlebrook 7H10 AgarA selective medium that contains oleic acid, albumin, dextrose, and catalase. The colonies of M. tuberculosis appear small, rough, and buff to white-colored, taking less time to appear compared to egg-based media.
4Triple Sugar Iron (TSI) AgarE. coli typically produces an acid butt, acid slant, and gas, with no H2S production, indicating it ferments lactose, sucrose, and glucose.
5Cystine Lactose Electrolyte-Deficient (CLED) AgarE. coli will give lactose-positive yellow colonies.
6Nickerson’s Medium or Bismuth Sulfite Glucose Glycine Yeast (BSGG)This medium is used to stimulate the production of germ tubes, a characteristic of Candida albicans.
7CHROMagar CandidaThis differential medium allows for the isolation and identification of Candida species based on colony color. Candida albicans usually forms green colonies on this medium.
8Blood AgarA differential medium used to identify bacteria based on their hemolytic properties. E. faecalis typically shows gamma-hemolysis on this medium, i.e., no hemolysis or change in the color of the medium.
1Sf1Ep mediumCulturing Treponema pallidum, the bacteria that causes syphilis, in vitro is a challenge. T. pallidum is not routinely cultured in the laboratory for diagnostic purposes, in part because it cannot be grown on artificial media. However, a breakthrough in culturing T. pallidum was reported in 2018 when researchers managed to grow the bacterium in a rabbit epithelial cell line (Sf1Ep) using a medium called 'Sf1Ep medium'. It's not used for routine diagnostic purposes, but for research only. The diagnosis involves direct microscopic examination, serologic tests, molecular tests and histopathology.
2Phenol Red Mannitol BrothThis is a differential medium, used to determine an organism's ability to ferment mannitol. S. aureus, which can ferment mannitol, will change the medium from red to yellow due to acid production.
3Blood Agar (BA)This is a nutrient-rich, differential medium that supports the growth of many organisms. S. aureus forms colonies that are round, smooth, and golden-yellow. This bacterium typically demonstrates β-hemolysis, which is complete lysis of red blood cells, resulting in a clear zone around the colonies. This hemolysis is due to the production of hemolysins by S. aureus.
4Sauton’s MediumA liquid medium that lacks detergents, which helps in the formation of corded colonies. When M. tuberculosis grows in this medium, it results in turbidity.
5Sula’s MediumA liquid medium containing glycerol, asparagine, and a variety of salts. The growth of M. tuberculosis results in turbidity.
6Middlebrook 7H11 AgarThis is a nutrient-rich medium similar to 7H10 but includes additional pyruvate for energy source, promoting more luxurious growth. The colonies of M. tuberculosis appear small, slightly domed, and rough with a butyrous consistency.
7Middlebrook 7H10 AgarA selective medium that contains oleic acid, albumin, dextrose, and catalase. The colonies of M. tuberculosis appear small, rough, and buff to white-colored, taking less time to appear compared to egg-based media.
8Brilliant Green Agar (BGA)A selective medium that is used to isolate Salmonella species, but E. coli can grow on it, albeit not as well.
9Urea Agar/BrothE. coli is typically urease negative, so no color change would be expected in this medium.
10Triple Sugar Iron (TSI) AgarE. coli typically produces an acid butt, acid slant, and gas, with no H2S production, indicating it ferments lactose, sucrose, and glucose.
11Simmons Citrate AgarUsed for citrate utilization testing. E. coli usually can't utilize citrate as a sole carbon source, so no growth or color change would be expected.
12Cystine Lactose Electrolyte-Deficient (CLED) AgarE. coli will give lactose-positive yellow colonies.
13Eosin Methylene Blue (EMB) AgarA selective and differential medium where E. coli forms distinctive metallic green sheen colonies due to vigorous lactose fermentation.
14Nickerson’s Medium or Bismuth Sulfite Glucose Glycine Yeast (BSGG)This medium is used to stimulate the production of germ tubes, a characteristic of Candida albicans.
15CHROMagar CandidaThis differential medium allows for the isolation and identification of Candida species based on colony color. Candida albicans usually forms green colonies on this medium.
16RPMI 1640 MediumIt is a rich medium that contains inorganic salts, glucose, amino acids, vitamins, and other nutrients that promote the growth of yeast cells.
17Blood AgarA differential medium used to identify bacteria based on their hemolytic properties. E. faecalis typically shows gamma-hemolysis on this medium, i.e., no hemolysis or change in the color of the medium.
18Todd-Hewitt BrothA liquid enrichment medium used for the cultivation of fastidious organisms such as streptococci and enterococci. E. faecalis will lead to a turbid broth due to microbial growth.
19Bile Esculin Agar (BEA)A selective and differential medium that differentiates group D Streptococci and Enterococci based on the ability to hydrolyze esculin in the presence of bile. E. faecalis hydrolyzes esculin, leading to the formation of a dark brown or black precipita